Archiv für den Monat: Februar 2015

Konfigurationsbits im PIC32

Bei meinen ersten Schritten mit dem PIC32 habe ich natürlich mit dem „Hello World“ der embedded Welt begonnen: ein Port Bit wird ein- und ausgeschaltet. Das hat auf Anhieb funktioniert.

Als nächstes stellt sich dann die Frage: wie schnell kann man einen Port ein- und ausschalten. Hier bin ich auf ca. 400 nS gekommen, eigentlich zu langsam für so einen schnellen Prozessor. Unglücklicherweise habe ich das Ergebnis einfach so hingenommen, da es schnell genug für meine Aufgaben war.

Hätte ich mich damals um eine Klärung bemüht, wären mir gestern mehrere Stunden Fehlersuche erspart geblieben. Mein Frequenzzählerprojekt kommt nicht so schnell voran wie erhofft (das liegt zum einen an der verfügbaren Zeit aber noch mehr daran, dass ich mehr lernen muss als ich vorher gedacht hätte) – aber es macht Fortschritte. Mittlerweile haben ich das Anzeigemodul und einen einfachen durchlaufenden Zähler. Als ich gestern meinen Referenztakt von 25 MHz auf den Zähler gegeben habe, hat sich gezeigt, dass der Zähltakt unter einem MHz lief. Der Oszillator war unschuldig, das Oszilloskop hat ordentliche 25 MHz angezeigt.

Die Fehlersuche hat sich etwas mühsam gestaltet, da ich gleich zwei Fehler in der Prozessorkonfiguration hatte. Diese hatte ich einfach aus einem Beispiel übernommen, welches offensichtlich für eine andere Prozessorversion war.

Zum einen wurde der Takt für die externen Komponenten durch den Wert 8 geteilt. Wenn man die kryptischen Kurznamen der Konfiguration verinnerlicht hat, ist das offensichtlich. Mir ist es aber vorher nicht aufgefallen.

Der größere Fehler bestand aber darin, dass die Konfiguration für einen externen 8 MHz Quarzoszillator eingestellt war. Ich habe aber keinen Quarz in meiner Schaltung (der Prozessortakt geht nicht in die Messgenauigkeit ein). Irgendwie lief der Prozessor aber trotzdem, vermutlich blieb er auf einem langsamen internen Oszillator für den Start hängen.

Nachdem ich die Konfiguration in Ordnung gebracht hatte (interner schneller RC Oszillator mit 8 MHz, PLL auf 64 MHz), lief mein Zähler problemlos mit den 25 MHZ (da der Zähler intern synchronisiert wird, ist die Zählertaktrate durch den Prozessortakt beschränkt).

#pragma config FPLLIDIV = DIV_2         // PLL Input Divider (2x Divider)
#pragma config FPLLMUL = MUL_16         // PLL Multiplier (16x Multiplier)
#pragma config FPLLODIV = DIV_1         // System PLL Output Clock Divider (PLL Divide by 1)
#pragma config FWDTEN = OFF

#pragma config FNOSC = FRCPLL           // Oscillator Selection Bits (Fast RC Osc with PLL)
#pragma config FSOSCEN = OFF            // Secondary Oscillator Enable (Disabled)
#pragma config IESO = OFF               // Internal/External Switch Over (Disabled)
#pragma config POSCMOD = OFF            // Primary Oscillator Configuration (Primary osc disabled)
#pragma config OSCIOFNC = OFF           // CLKO Output Signal Active on the OSCO Pin (Disabled)
#pragma config FPBDIV = DIV_1           // Peripheral Clock Divisor (Pb_Clk is Sys_Clk/1)
#pragma config FCKSM = CSDCMD           // Clock Switching and Monitor Selection (Clock Switch Disable, FSCM Disabled)

 

Als nächstes habe ich nun noch mal mein Blinky Programm korrigiert. Jetzt komme ich auf eine Periode von ca. 100 nS für ein Bit Setzen und Zurücksetzen – also ca. 50 nS für eine Portausgabe. Das ist schon viel näher an den erwarteten Werten.

 

Schneller Takt

Frequenzzähler/ Periodenmesser mit einem PIC32 – Teil 4

Als nächstes benötige ich die Zähler für das Eingangssignal. Praktischerweise besitzt der PIC32 neben dem Timer1, den ich für die Anzeige verwende, noch vier weitere 16 Bit Zähler, die sich zu zwei 32 Bit Zählern zusammenschalten lassen. Heute habe ich mich darum gekümmert, die Timer 2 und 3 als 32 Bit Zähler zu verwenden.

In einem ersten Schritt habe ich mich auf die Zusammenschaltung konzentriert und mit dem internen Takt wie beim Timer1 gearbeitet. Das geht relativ einfach und ist nach einem kurzen Blick in das Datenbuch leicht zu erledigen.

    OpenTimer23(T23_ON | T23_SOURCE_INT | T23_PS_1_1, 0xffffffff);

Statt Timer1 wird nun die Kombination aus Timer2 und Timer3 verwendet. Die vordefinierten Hilfsfunktionen und Konstanten sind erfreulicherweise dafür vorbereitet. Der Prescaler wird auf 1 gesetzt, der maximale Timerwert auf volle 32 Bit (die aber nicht komplett benötigen werde).

In der Hauptschleife warte ich nun immer rund eine halbe Sekunde, lese den Timer23 aus und übertrage den aktuellen Wert in den Bildspeicher.

    while(1) {
        int del;
        // wait for 500 milliseconds
        for (del = 0; del < 80000; del++);

        setInt(ReadTimer23());
    };

Das war der einfache Teil, da es im Internet eine Vielzahl von Beispielen gibt, wie man einen Timer mit einem internen Takt verwendet. Für einen Frequenzzähler benötige aber einen Zähler für einen externen Takt. An dieser Stelle habe ich erst mal einen Schreck bekommen, da mir klar wurde, dass ich die Pins für die Ausgangssignale ohne Rücksicht darauf verteilt habe, ob sie eventuell auch von den Timern benötigt werden. Aber ich hatte Glück – das Timer2 Clock Signal, welches auch Eingang für den kombinierten Timer 2 + 3 ist, hat als Eingang einen programmierbaren Pin (PPS). Da ich auf Anhieb kein Beispiel dafür im Internet gefunden habe, musste ich mich jetzt also erst mal mit der Programmierung der Pinbelegung auseinandersetzen. Erfreulicherweise ist es dann aber doch recht einfach. Es gibt zu jedem Eingang eines Funktionsbausteins eine Liste mit den möglichen Pins. Aus dieser Liste muss man einen passenden Pin auswählen, den Mapping-Wert auslesen und in ein Register eintragen. Das war alles – wenn man es erst mal verstanden hat ist es ganz simpel: T3CKRbits.T3CKR = 0;.

void startCounter() {
    OpenTimer23(T23_ON | T23_SOURCE_EXT | T23_PS_1_1, 0xffffffff);
    T3CKRbits.T3CKR = 0; // RA0
}

Wie man im Video sieht, habe ich mittlerweile auch das im Teil 3 beschriebene Übersprechen zwischen den Anzeigestellen in Griff. Das Flackern kommt durch eine Überlagerung der Kamerafrequenz mit der Anzeigefrequenz, es ist im Original nicht sichtbar. Die Wiederholfrequenz liegt bei ca. 90 Hertz.

Aktueller Software Stand:

/* 
 * File:   main.c
 * Author: Matthias Thiele
 *
 * Created on 23. Januar 2015, 21:08
 */

#include <stdio.h>
#include <stdlib.h>
#include <plib.h>

// Configuration Bit settings
// SYSCLK = 80 MHz (8MHz Crystal/ FPLLIDIV * FPLLMUL / FPLLODIV)
// PBCLK = 40 MHz
// Primary Osc w/PLL (XT+,HS+,EC+PLL)
// WDT OFF
// Other options are don't care
//
#pragma config FPLLMUL = MUL_20, FPLLIDIV = DIV_2, FPLLODIV = DIV_1, FWDTEN = OFF
#pragma config POSCMOD = HS, FNOSC = PRIPLL, FPBDIV = DIV_8
#pragma config OSCIOFNC = OFF // CLKO Output Signal Active on the OSCO disabled
#pragma config JTAGEN = OFF // JTAG Enable (JTAG Disabled)

#define SYS_FREQ             (80000000L)

static int digits[9];
static int dark[9];

// Ermittelt das Port B Bitmuster für einen Wert
// an einer Position im Bildspeicher
int calcPattern(int pos, int value) {
  int hexDigit = (value & 0xf) << 7;
  int position = ((pos & 1) << 11) | ((pos & 0xe) << 12);
  int comma = (pos == 1) ? 0x20 : 0;

  return hexDigit | position | comma;
}

// Schreibt eine Ziffer an eine Position im Bildspeicher
void setDigit(int pos, int value) {
  int pattern = calcPattern(pos, value);
  digits[pos] = pattern;
}

// Schreibt einen Integer Wert in den Bildspeicher
void setInt(int value) {
    int i, j;

    for (i = 8; i >= 0; i--) {
        int part = value % 10;
        setDigit(i, part);

        value = value / 10;
        if (value == 0) {
            // clear leading digits
            for (j = i - 1; j >= 0; j--) {
                setDigit(j, 0xf);
            }
            break;
        }
    }
}

// Zeigt in einer Schleife die 9 Stellen des
// Displays an. Wird aus dem Heartbeat Interrupt
// ca. 1000 mal pro Sekunde aufgerufen.
void displayTick() {
    static int pos = 0;

    // dunkel schalten
    mPORTBWrite(dark[pos]);
    int delay;
    for (delay = 0; delay < 3; delay++);

    // neuen Wert eintragen
    mPORTBWrite(digits[pos]);

    // nächste Stelle ermitteln (round robin)
    pos++;
    if (pos > 8) {
        pos = 0;
    }
}

// Interrupt Service Routine für Timer1
void __ISR(_TIMER_1_VECTOR, ipl2) Timer1Handler(void) {
    displayTick();
    mT1ClearIntFlag();
}

// Initialisert das Display
void initDisplay() {
    int i;
    for (i = 0; i < 9; i++) {
        dark[i] = calcPattern(i, 0xf);
    }
}

// Initialisiert und startet den Heartbeat Timer
void startHeartbeat() {
    OpenTimer1(T1_ON | T1_SOURCE_INT | T1_PS_1_256, 4);
    INTEnableSystemMultiVectoredInt();
    ConfigIntTimer1(T1_INT_ON | T1_INT_PRIOR_2);
    mT1ClearIntFlag();
}

// Initialisiert und startet die Zähler Timer
void startCounter() {
    OpenTimer23(T23_ON | T23_SOURCE_EXT | T23_PS_1_1, 0xffffffff);
    T3CKRbits.T3CKR = 0; // RA0
}

int main(void)
{
    SYSTEMConfig(SYS_FREQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);
    mJTAGPortEnable(DEBUG_JTAGPORT_OFF);

    ANSELA = 0;
    ANSELB = 0;
    CM1CON = 0;
    CM2CON = 0;
    CM3CON = 0;
    
    mPORTBSetPinsDigitalOut( 0xfffc );
    mPORTASetPinsDigitalIn( 0x3 );

    initDisplay();
    startHeartbeat();
    startCounter();

    while(1) {
        int del;
        // wait for 500 milliseconds
        for (del = 0; del < 80000; del++);

        setInt(ReadTimer23());
    };
    
}

Weiter zum Teil 5

Frequenzzähler/ Periodenmesser mit einem PIC32 – Teil 3

An diesem Wochenende hatte ich ein paar Stunden Zeit um mich um die Anzeigeroutine zu kümmern. Ziel war es, dass die Anzeige Interruptgesteuert aus einem Bildspeicher heraus erfolgt.

Da die Anzeige 9-stellig ist und ich über eine 10. Stelle noch ein paar externe LEDs ansteuern möchte, brauche ich für eine Wiederholrate von 100 Hertz eine Interruptrate von 1 kHz. Diese Frequenz wird intern über den Timer1 erzeugt.

OpenTimer1(T1_ON | T1_SOURCE_INT | T1_PS_1_256, 4);

Die Teilerfaktoren habe ich experimentell ermittelt, sie unterscheiden sich fast um den Faktor 10 von den theoretisch notwendigen Werten. Ich habe den Verdacht, dass mein PIC im Augenblick nicht mit der vollen Taktrate läuft. Das muss ich bei Gelegenheit mal genauer untersuchen, im Augenblick stört es mich aber nicht.

Als nächstes benötige ich eine Interrupt Service Routine (ISR), welche bei jedem Timer-Überlauf aufgerufen wird. Dazu muss die Routine definiert werden und der Timer-Interrupt aktiviert werden.

void __ISR(_TIMER_1_VECTOR, ipl2) Timer1Handler(void) {
    displayTick();
    mT1ClearIntFlag();
}

Die Funktion meldet sich als ISR für den Timer1 an. Bei jedem Aufruf wird die nächste Stelle angezeigt, das ganze immer im Kreis. Am Ende der Routine wird das Interrupt Flag zurückgesetzt damit sie im nächsten Intervall wieder aufgerufen wird. Später wird diese Routine auch noch die Abfrage der Eingabetaster durchführen.

void startHeartbeat() {
    OpenTimer1(T1_ON | T1_SOURCE_INT | T1_PS_1_256, 4);
    INTEnableSystemMultiVectoredInt();
    ConfigIntTimer1(T1_INT_ON | T1_INT_PRIOR_2);
    mT1ClearIntFlag();
}

Hier nun die komplette Timer-Initialisierung. Nach der Programmierung der Teilerfaktoren wird der Interrupt eingeschaltet und konfiguriert. Das war schon alles. Jetzt wird die Funktion Timer1Handler rund 1000 mal pro Sekunde aufgerufen.

Als nächstes kommt dann die eigentliche Anzeige in der Funktion displayTick(). Sie müsste eigentlich die aktuelle Ziffer aus dem Bildspeicher auslesen, das dafür benötigte Bitmuster für den Ausgabeport ermitteln (jeweils 4 Bit für die Siebensegmentanzeige und den Multiplexer für die Stellenauswahl) und dieses Muster auf den Port B ausgeben. Es ist aber verschenkte Zeit, das Bitmuster 1000 mal pro Sekunde ständig neu zu errechnen, deshalb wird es beim Füllen des Bildspeichers errechnet und statt einfach nur der Ziffer wird das Bitmuster dort abgelegt. Die Ausgaberoutine muss also immer nur die nächste Stelle aus dem Bildspeicher auslesen und auf den Port ausgeben. Die Position des Ausgabecursors wird in der lokalen Variablen pos gespeichert.

static int digits[9];

void displayTick() {
    static int pos = 0;

    mPORTBWrite(digits[pos]);

    pos++;
    if (pos > 8) {
        pos = 0;
    }
}

Nun fehlt noch eine Möglichkeit, den Bildspeicher zu füllen. Als low level Funktion gibt es einen Aufruf, der die Position und einen Wert enthält. Diese Funktion errechnet daraus das Bitmuster für den Port B.

void setDigit(int pos, int value) {
  int hexDigit = (value & 0xf) << 7;
  int position = ((pos & 1) << 11) | ((pos & 0xe) << 12);
  int pattern = hexDigit | position;
  digits[pos] = pattern;
}

Darauf aufbauend gibt es nun eine Funktion, die einen 32 Bit Integer Wert in den Bildspeicher einträgt.

void setInt(int value) {
    int i, j;

    for (i = 8; i >= 0; i–) {
        int part = value % 10;
        setDigit(i, part);

        value = value / 10;
        if (value == 0) {
            // clear leading digits
            for (j = i – 1; j >= 0; j–) {
                setDigit(j, 0xf);
            }
            break;
        }
    }
}

7-Segment AnzeigeBeim Betrachten der Bilder ist mir aufgefallen, dass es ein sichtbares Übersprechen zwischen den einzelnen Stellen gibt. Ich vermute, dass die Abschaltung der Stelle nicht schnell genug ist und jede Stelle deshalb ein paar Mikrosekunden lang noch aktiv ist, während bereits die nächste Stelle angezeigt wird.

[Edit] Das habe ich mir mittlerweile mal genauer angesehen. Man bekommt den Effekt leicht per Software weg, indem man vor dem Wechsel der Stelle den Wert 0xf (alles dunkel) ausgibt und ein paar Mikrosekunden wartet. Ich vermute, dass der PNP Darlington Transistor nicht besonders schnell schaltet. Da er einen großen Vorwiderstand hat, dauert es vermutlich mehrere Mikrosekunden bis er abschaltet.

 
Weiter zum Teil 4

Management Mythen

Heute bin ich durch Zufall über einen älteren Blog Beitrag von Steven Sinofsky gestolpert: „Management Clichés That Work„. Da er auf diesem Gebiet als (ehemaliger) verantwortlicher Manager für Windows und Office viel Erfahrung haben sollte, habe ich den Beitrag natürlich gelesen. Ein paar Punkte daraus möchte ich hier aufgreifen.

Sinnvollerweise liest man erst den Beitrag von Steven Sinofsky. Anschließend geht es hier weiter…

Promise and deliver: Für den Teamleiter ist es wichtig, dass die Entwickler realistische Schätzungen abgeben. Deshalb bin ich genauso wie er der Meinung, dass die Masche “under promise and over deliver” (weniger zusagen als man leisten kann und am Ende des Projekts deshalb mehr abliefern als gefordert wurde) schlecht ist. Seine Begründung finde ich nur unzureichend. Das Problem bei dieser Vorgehensweise liegt für den Manager darin, dass er nur schlecht planen kann. Das Problem für den Entwickler wiegt noch schwerer: über fast die gesamte Projektlaufzeit wird er als wenig leistungsfähiger Mitarbeiter eingestuft. Die Erleichertung am Ende – „er hat ja doch einiges abgeliefert“ macht meiner Meinung nach die über längere Zeit aufgebaute Meinung nicht wett.

Richtig ist es (meiner Meinung nach), eine möglichst realistische Schätzung über die erreichbaren Ziele abzugeben. Gemeinsam mit einer Risikoabschätzung, was mindestens erreicht werden kann. Es ist die Aufgabe des Managers, sich Gedanken darüber zu machen, welche Zahlen nach außen kommuniziert werden. Dazu muss er aber möglichst realistische Zahlen haben. Wenn der Entwickler sich durch übermäßig hohe Sicherheitszuschläge vor Enttäuschungen schützen will, ist das unaufrichtig gegenüber der Firma und dem Team.

Diese Forderung funktioniert natürlich nur dann, wenn der Manager im Falle unerwarteter Probleme und nicht erreichter Ziele seine Verantwortung nicht einfach auf den Entwickler abschiebt. Er hatte die Zahlen und kannte die Risiken. Wenn er das nicht passend nach außen kommuniziert, muss er dafür auch selber die Verantwortung übernehmen.

Make sure bad news travels fast: dieser Punkt geht Hand in Hand mit dem bereits gesagten. Wenn die Schätzung aufgrund unerwarteter Gründe nicht aufgeht, dann muss man es auch so früh wie möglich kommunizieren. Nur dann hat der Manager die Möglichkeit Veränderungen vorzunehmen. Im schlimmsten Fall, dass der Releasetermin frühzeitig verschoben wird.

Für den Entwickler ist es hier wichtig, dass er sich nicht selber belügt. Der lustig gemeinte Satz „ein Softwareprojekt ist über 80% der Laufzeit fast fertig“ hat einen ernsten Hintergrund. Wenn ich nicht erkennen will, dass ich mit meinen Terminen im Verzug bin, kann ich es auch nicht weiterleiten. Mittelfristig ist so etwas für einen Entwickler ein ernsthaftes Karrierehindernis – er wird von seinem Manager ständig als Projektrisiko angesehen. Und dieses negative Gefühl überdeckt einen Teil der Leistungen.

Writing is thinking: es ist meiner Meinung nach offensichtlich, dass man beim Niederschreiben von Gedanken und Plänen gezwungen ist, tiefer über ein Problem nachzudenken. Wenn man einen Plan nur „im Kopf“ hat, kann man sich leichter selber beschummeln und offensichtliche Lücken leichter übersehen. Sobald man es schreibt, bekommt es eine andere Qualität. Damit ist nicht gemeint, dass man ständig umfangreiche Reports schreibt und nicht mehr zum Arbeiten kommt. Einfach in ein paar Sätzen die wichtigen Punkte aufschreiben und bei Bedarf noch ein paar Handskizzen reichen oft schon aus.

Noch besser ist es, wenn man es jemand anderen erklärt. Wenn ich es nicht erklären kann, habe ich es auch nicht verstanden. Damit ich es erklären kann, muss ich besser darüber nachdenken. Ich glaube, dass ein Teil des Erfolgs von Teamarbeit darin liegt, dass man seine Gedanken ständig erklären muss.

Practice transparency within your team: ein Softwareentwickler ist kein Einzelkämpfer in einer dunklen Höhle. Er ist ein Teamplayer – andere sind auf ihn angewiesen und er ist auf andere angewiesen. Und schon eine einzige Primadonna kann ein ganzes Team zerstören.

Don’t ask for information or reports unless they help those you ask to do their jobs: eine wichtige Aufgabe des Manager liegt darin, dafür zu sorgen, dass sein Team möglichst gute Arbeitsmöglichkeiten hat und somit die maximale Leistung bringen kann. Das ist keine reine Menschenfreundlichkeit sondern auch ganz egoistischer Selbstzweck. Ein egozentrischer Manager, der seine Eitelkeiten bedingungslos über sein gesamtes Team stellt, ist ein unfähiger Manager und gehört ausgetauscht.

Don’t keep two sets of books: den Vorgesetzten über den Projektfortschritt zu täuschen ist ein Verhalten, welches fast zwangsläufig zu Problemen führt. Ich glaube nicht, dass man das noch weiter erläutern muss.

Never vote on anything: hier bin ich abweichender Meinung. Vielleicht ist seine Einstellung auch der amerikanischen Eigenart geschuldet, dass man ein offenes Nein vermeiden sollte weil es unhöflich ist. Es gibt nun mal Situationen in denen alle Argumente ausgetauscht wurden, jeder hat die Position der anderen verstanden und trotzdem kommt man zu unterschiedlichen Ansichten. Hier kann es schon sinnvoll sein, einfach mal abzustimmen. Die Mehrheit hat nicht immer recht – aber wenn viele kluge Leute anderer Ansicht sind als ich es bin, dann ist es ein Grund, die eigene Position nochmal ernsthaft zu überdenken. Am Ende muss der Leiter entscheiden – er muss es schließlich auch verantworten.

When presenting the boss with n alternatives he/she will always choose option n+1: Autsch – das geht gegen die „pointy haired bosses„. Wenn der Vorgesetzte nicht in der Lage ist, die Möglichkeiten zu beurteilen, ist das eine Nothilfe. Ein normaler Manager möchte hier lieber eine ehrliche Liste der Möglichkeiten und Risiken haben. Niemand möchte gerne manipuliert werden, die Entwickler nicht – und die Manager auch nicht.

Products don’t ship with a list of features you thought you’d do but didn’t: wenn ein Feature so unwichtig ist, dass es ständig von anderen (neueren) wichtigen Features verdrängt wird, dann sollte man auch konsequent sein und es streichen. Sonst kommt man irgendwann in die Verlegenheit, dass man an unwichtigen Dingen arbeitet, „weil sie schon so lange da liegen“ – statt an den wichtigen Themen zu arbeiten. Es ist auch ehrlicher gegenüber dem Stakeholder dieses Features – lieber ein Ende mit Schrecken als ein Schrecken ohne Ende. Die Ausnahme hier: wenn es dem Einreicher mehr um persönliche Eitelkeiten als um das Produkt geht, kann es „humaner“ sein, den Featurewunsch in einer dunklen Ecken verschimmeln zu lassen als einen Grabenkrieg zu führen.

 

 

Frequenzzähler/ Periodenmesser mit einem PIC32 – Teil 2

Da ich am Wochenende im Augenblick stark in die Vereinsarbeit (wsb-calw.de) eingebunden bin, geht es mit meinem kleinen Projekt nicht so schnell voran wie gewünscht. Ich habe in dieser Woche aber doch ein paar weitere Schritte geschafft.

Die erste Hürde lag darin, dass ich nicht den kompletten Microstick einbauen wollte. Zum einen ist es zu teuer, für jedes kleine Bastelprojekt ca. 40 EUR auszugeben. Zum anderen wollte ich ein echtes Microcontrollerprojekt haben und nicht einfach nur eine fertige Modulplatine einbauen.

Eigentlich ist es auch nicht kompliziert. Für die Programmierung und das Debugging sind 5 Leitungen vorgesehen: GND und +3.3V, Daten und Takt sowie Reset. Also habe ich den PIC aus dem Microstick herausgenommen und auf meine Platine gesetzt. Die 5 Leitungen habe ich von der Platine mit dem Adaptersockel auf der Unterseite verbunden. Et voià – der PIC wurde von der Entwicklungsumgebung nicht gefunden. An dieser Stelle hätte ich mir eine Stunde Fehlersuche ersparen können, wenn ich mir den Schaltplan des Microstick richtig angesehen hätte. Dort kann man nämlich genau sehen, dass einige Prozessorpins nicht mit dem Adaptersockel verbunden sind. Unter anderem Reset und +3.3V.

Nachdem ich die Verbindung vom Adaptersockel entfernt und direkt in PIC Fassung eingesteckt hatte, lief die Kontaktaufnahme problemlos. Nun hatte ich den Stand, dass ich einen externen PIC32 programmieren und debuggen konnte.

Der nächste Schritt war dann Fleißarbeit: den Siebensegmentdecoder und den 1 aus 16 Demultiplexer vom Steckbrett auf meine Lochrasterplatine versetzen. Das wäre eigentlich einfach gewesen. Unglücklicherweise habe ich für die Verbindungen einen Draht mit einer extrem weichen und wärmeempfindlichen Isolierung verwendet. Und mir dabei gleich einen Kurzschluss zwischen zwei Datenleitungen eingebaut.

Kurzschluss2

Um es noch etwas komplizierter zu machen, habe ich an dem Multiplexer auch noch den Enabled Eingang offen gelassen. Da ein offener CMOS Eingang auf irgend einem Pegel hängt, bekommt man eine extrem unzuverlässige Schaltung. Bei mir blieb das Display dunkel – bis ich mit dem Finger in die Nähe des ICs gekommen bin. Alleine die Nähe hat ausgereicht, dass der Pin mit 50 Hertz Netzfrequenz ein- und ausgeschaltet hat. Wieder ein Abend verloren, bis ich das gefunden hatte.

Der nächste Abend ging dafür drauf, die 9 PNP Transistoren für den Multiplexer auf der Anodenseite einzulöten und Basiswiederständen zu versehen. Dabei hatte ich im Vorfeld den benötigten Platz etwas knapp kalkuliert. Es hat zwar alles gepasst, ist aber etwas gedrängt und schief. Nun ja – später ist es in einem Gehäuse und man sieht es nicht mehr.

Widerstände in zwei Ebenen2

 

Jetzt läuft aber alles und der nächste Schritt besteht darin, eine interruptgesteuerte Anzeigeroutine für den Multiplexer zu schreiben. Der Lötkolben kann ein paar Tage ausruhen.

Langsamer Durchlauf Blick von Oben Blick von Unten

Weiter zum Teil 3