Archiv für den Autor: Matthias

Konfigurationsbits im PIC32

Bei meinen ersten Schritten mit dem PIC32 habe ich natürlich mit dem „Hello World“ der embedded Welt begonnen: ein Port Bit wird ein- und ausgeschaltet. Das hat auf Anhieb funktioniert.

Als nächstes stellt sich dann die Frage: wie schnell kann man einen Port ein- und ausschalten. Hier bin ich auf ca. 400 nS gekommen, eigentlich zu langsam für so einen schnellen Prozessor. Unglücklicherweise habe ich das Ergebnis einfach so hingenommen, da es schnell genug für meine Aufgaben war.

Hätte ich mich damals um eine Klärung bemüht, wären mir gestern mehrere Stunden Fehlersuche erspart geblieben. Mein Frequenzzählerprojekt kommt nicht so schnell voran wie erhofft (das liegt zum einen an der verfügbaren Zeit aber noch mehr daran, dass ich mehr lernen muss als ich vorher gedacht hätte) – aber es macht Fortschritte. Mittlerweile haben ich das Anzeigemodul und einen einfachen durchlaufenden Zähler. Als ich gestern meinen Referenztakt von 25 MHz auf den Zähler gegeben habe, hat sich gezeigt, dass der Zähltakt unter einem MHz lief. Der Oszillator war unschuldig, das Oszilloskop hat ordentliche 25 MHz angezeigt.

Die Fehlersuche hat sich etwas mühsam gestaltet, da ich gleich zwei Fehler in der Prozessorkonfiguration hatte. Diese hatte ich einfach aus einem Beispiel übernommen, welches offensichtlich für eine andere Prozessorversion war.

Zum einen wurde der Takt für die externen Komponenten durch den Wert 8 geteilt. Wenn man die kryptischen Kurznamen der Konfiguration verinnerlicht hat, ist das offensichtlich. Mir ist es aber vorher nicht aufgefallen.

Der größere Fehler bestand aber darin, dass die Konfiguration für einen externen 8 MHz Quarzoszillator eingestellt war. Ich habe aber keinen Quarz in meiner Schaltung (der Prozessortakt geht nicht in die Messgenauigkeit ein). Irgendwie lief der Prozessor aber trotzdem, vermutlich blieb er auf einem langsamen internen Oszillator für den Start hängen.

Nachdem ich die Konfiguration in Ordnung gebracht hatte (interner schneller RC Oszillator mit 8 MHz, PLL auf 64 MHz), lief mein Zähler problemlos mit den 25 MHZ (da der Zähler intern synchronisiert wird, ist die Zählertaktrate durch den Prozessortakt beschränkt).

#pragma config FPLLIDIV = DIV_2         // PLL Input Divider (2x Divider)
#pragma config FPLLMUL = MUL_16         // PLL Multiplier (16x Multiplier)
#pragma config FPLLODIV = DIV_1         // System PLL Output Clock Divider (PLL Divide by 1)
#pragma config FWDTEN = OFF

#pragma config FNOSC = FRCPLL           // Oscillator Selection Bits (Fast RC Osc with PLL)
#pragma config FSOSCEN = OFF            // Secondary Oscillator Enable (Disabled)
#pragma config IESO = OFF               // Internal/External Switch Over (Disabled)
#pragma config POSCMOD = OFF            // Primary Oscillator Configuration (Primary osc disabled)
#pragma config OSCIOFNC = OFF           // CLKO Output Signal Active on the OSCO Pin (Disabled)
#pragma config FPBDIV = DIV_1           // Peripheral Clock Divisor (Pb_Clk is Sys_Clk/1)
#pragma config FCKSM = CSDCMD           // Clock Switching and Monitor Selection (Clock Switch Disable, FSCM Disabled)

 

Als nächstes habe ich nun noch mal mein Blinky Programm korrigiert. Jetzt komme ich auf eine Periode von ca. 100 nS für ein Bit Setzen und Zurücksetzen – also ca. 50 nS für eine Portausgabe. Das ist schon viel näher an den erwarteten Werten.

 

Schneller Takt

Frequenzzähler/ Periodenmesser mit einem PIC32 – Teil 4

Als nächstes benötige ich die Zähler für das Eingangssignal. Praktischerweise besitzt der PIC32 neben dem Timer1, den ich für die Anzeige verwende, noch vier weitere 16 Bit Zähler, die sich zu zwei 32 Bit Zählern zusammenschalten lassen. Heute habe ich mich darum gekümmert, die Timer 2 und 3 als 32 Bit Zähler zu verwenden.

In einem ersten Schritt habe ich mich auf die Zusammenschaltung konzentriert und mit dem internen Takt wie beim Timer1 gearbeitet. Das geht relativ einfach und ist nach einem kurzen Blick in das Datenbuch leicht zu erledigen.

    OpenTimer23(T23_ON | T23_SOURCE_INT | T23_PS_1_1, 0xffffffff);

Statt Timer1 wird nun die Kombination aus Timer2 und Timer3 verwendet. Die vordefinierten Hilfsfunktionen und Konstanten sind erfreulicherweise dafür vorbereitet. Der Prescaler wird auf 1 gesetzt, der maximale Timerwert auf volle 32 Bit (die aber nicht komplett benötigen werde).

In der Hauptschleife warte ich nun immer rund eine halbe Sekunde, lese den Timer23 aus und übertrage den aktuellen Wert in den Bildspeicher.

    while(1) {
        int del;
        // wait for 500 milliseconds
        for (del = 0; del < 80000; del++);

        setInt(ReadTimer23());
    };

Das war der einfache Teil, da es im Internet eine Vielzahl von Beispielen gibt, wie man einen Timer mit einem internen Takt verwendet. Für einen Frequenzzähler benötige aber einen Zähler für einen externen Takt. An dieser Stelle habe ich erst mal einen Schreck bekommen, da mir klar wurde, dass ich die Pins für die Ausgangssignale ohne Rücksicht darauf verteilt habe, ob sie eventuell auch von den Timern benötigt werden. Aber ich hatte Glück – das Timer2 Clock Signal, welches auch Eingang für den kombinierten Timer 2 + 3 ist, hat als Eingang einen programmierbaren Pin (PPS). Da ich auf Anhieb kein Beispiel dafür im Internet gefunden habe, musste ich mich jetzt also erst mal mit der Programmierung der Pinbelegung auseinandersetzen. Erfreulicherweise ist es dann aber doch recht einfach. Es gibt zu jedem Eingang eines Funktionsbausteins eine Liste mit den möglichen Pins. Aus dieser Liste muss man einen passenden Pin auswählen, den Mapping-Wert auslesen und in ein Register eintragen. Das war alles – wenn man es erst mal verstanden hat ist es ganz simpel: T3CKRbits.T3CKR = 0;.

void startCounter() {
    OpenTimer23(T23_ON | T23_SOURCE_EXT | T23_PS_1_1, 0xffffffff);
    T3CKRbits.T3CKR = 0; // RA0
}

Wie man im Video sieht, habe ich mittlerweile auch das im Teil 3 beschriebene Übersprechen zwischen den Anzeigestellen in Griff. Das Flackern kommt durch eine Überlagerung der Kamerafrequenz mit der Anzeigefrequenz, es ist im Original nicht sichtbar. Die Wiederholfrequenz liegt bei ca. 90 Hertz.

Aktueller Software Stand:

/* 
 * File:   main.c
 * Author: Matthias Thiele
 *
 * Created on 23. Januar 2015, 21:08
 */

#include <stdio.h>
#include <stdlib.h>
#include <plib.h>

// Configuration Bit settings
// SYSCLK = 80 MHz (8MHz Crystal/ FPLLIDIV * FPLLMUL / FPLLODIV)
// PBCLK = 40 MHz
// Primary Osc w/PLL (XT+,HS+,EC+PLL)
// WDT OFF
// Other options are don't care
//
#pragma config FPLLMUL = MUL_20, FPLLIDIV = DIV_2, FPLLODIV = DIV_1, FWDTEN = OFF
#pragma config POSCMOD = HS, FNOSC = PRIPLL, FPBDIV = DIV_8
#pragma config OSCIOFNC = OFF // CLKO Output Signal Active on the OSCO disabled
#pragma config JTAGEN = OFF // JTAG Enable (JTAG Disabled)

#define SYS_FREQ             (80000000L)

static int digits[9];
static int dark[9];

// Ermittelt das Port B Bitmuster für einen Wert
// an einer Position im Bildspeicher
int calcPattern(int pos, int value) {
  int hexDigit = (value & 0xf) << 7;
  int position = ((pos & 1) << 11) | ((pos & 0xe) << 12);
  int comma = (pos == 1) ? 0x20 : 0;

  return hexDigit | position | comma;
}

// Schreibt eine Ziffer an eine Position im Bildspeicher
void setDigit(int pos, int value) {
  int pattern = calcPattern(pos, value);
  digits[pos] = pattern;
}

// Schreibt einen Integer Wert in den Bildspeicher
void setInt(int value) {
    int i, j;

    for (i = 8; i >= 0; i--) {
        int part = value % 10;
        setDigit(i, part);

        value = value / 10;
        if (value == 0) {
            // clear leading digits
            for (j = i - 1; j >= 0; j--) {
                setDigit(j, 0xf);
            }
            break;
        }
    }
}

// Zeigt in einer Schleife die 9 Stellen des
// Displays an. Wird aus dem Heartbeat Interrupt
// ca. 1000 mal pro Sekunde aufgerufen.
void displayTick() {
    static int pos = 0;

    // dunkel schalten
    mPORTBWrite(dark[pos]);
    int delay;
    for (delay = 0; delay < 3; delay++);

    // neuen Wert eintragen
    mPORTBWrite(digits[pos]);

    // nächste Stelle ermitteln (round robin)
    pos++;
    if (pos > 8) {
        pos = 0;
    }
}

// Interrupt Service Routine für Timer1
void __ISR(_TIMER_1_VECTOR, ipl2) Timer1Handler(void) {
    displayTick();
    mT1ClearIntFlag();
}

// Initialisert das Display
void initDisplay() {
    int i;
    for (i = 0; i < 9; i++) {
        dark[i] = calcPattern(i, 0xf);
    }
}

// Initialisiert und startet den Heartbeat Timer
void startHeartbeat() {
    OpenTimer1(T1_ON | T1_SOURCE_INT | T1_PS_1_256, 4);
    INTEnableSystemMultiVectoredInt();
    ConfigIntTimer1(T1_INT_ON | T1_INT_PRIOR_2);
    mT1ClearIntFlag();
}

// Initialisiert und startet die Zähler Timer
void startCounter() {
    OpenTimer23(T23_ON | T23_SOURCE_EXT | T23_PS_1_1, 0xffffffff);
    T3CKRbits.T3CKR = 0; // RA0
}

int main(void)
{
    SYSTEMConfig(SYS_FREQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);
    mJTAGPortEnable(DEBUG_JTAGPORT_OFF);

    ANSELA = 0;
    ANSELB = 0;
    CM1CON = 0;
    CM2CON = 0;
    CM3CON = 0;
    
    mPORTBSetPinsDigitalOut( 0xfffc );
    mPORTASetPinsDigitalIn( 0x3 );

    initDisplay();
    startHeartbeat();
    startCounter();

    while(1) {
        int del;
        // wait for 500 milliseconds
        for (del = 0; del < 80000; del++);

        setInt(ReadTimer23());
    };
    
}

Weiter zum Teil 5

Frequenzzähler/ Periodenmesser mit einem PIC32 – Teil 3

An diesem Wochenende hatte ich ein paar Stunden Zeit um mich um die Anzeigeroutine zu kümmern. Ziel war es, dass die Anzeige Interruptgesteuert aus einem Bildspeicher heraus erfolgt.

Da die Anzeige 9-stellig ist und ich über eine 10. Stelle noch ein paar externe LEDs ansteuern möchte, brauche ich für eine Wiederholrate von 100 Hertz eine Interruptrate von 1 kHz. Diese Frequenz wird intern über den Timer1 erzeugt.

OpenTimer1(T1_ON | T1_SOURCE_INT | T1_PS_1_256, 4);

Die Teilerfaktoren habe ich experimentell ermittelt, sie unterscheiden sich fast um den Faktor 10 von den theoretisch notwendigen Werten. Ich habe den Verdacht, dass mein PIC im Augenblick nicht mit der vollen Taktrate läuft. Das muss ich bei Gelegenheit mal genauer untersuchen, im Augenblick stört es mich aber nicht.

Als nächstes benötige ich eine Interrupt Service Routine (ISR), welche bei jedem Timer-Überlauf aufgerufen wird. Dazu muss die Routine definiert werden und der Timer-Interrupt aktiviert werden.

void __ISR(_TIMER_1_VECTOR, ipl2) Timer1Handler(void) {
    displayTick();
    mT1ClearIntFlag();
}

Die Funktion meldet sich als ISR für den Timer1 an. Bei jedem Aufruf wird die nächste Stelle angezeigt, das ganze immer im Kreis. Am Ende der Routine wird das Interrupt Flag zurückgesetzt damit sie im nächsten Intervall wieder aufgerufen wird. Später wird diese Routine auch noch die Abfrage der Eingabetaster durchführen.

void startHeartbeat() {
    OpenTimer1(T1_ON | T1_SOURCE_INT | T1_PS_1_256, 4);
    INTEnableSystemMultiVectoredInt();
    ConfigIntTimer1(T1_INT_ON | T1_INT_PRIOR_2);
    mT1ClearIntFlag();
}

Hier nun die komplette Timer-Initialisierung. Nach der Programmierung der Teilerfaktoren wird der Interrupt eingeschaltet und konfiguriert. Das war schon alles. Jetzt wird die Funktion Timer1Handler rund 1000 mal pro Sekunde aufgerufen.

Als nächstes kommt dann die eigentliche Anzeige in der Funktion displayTick(). Sie müsste eigentlich die aktuelle Ziffer aus dem Bildspeicher auslesen, das dafür benötigte Bitmuster für den Ausgabeport ermitteln (jeweils 4 Bit für die Siebensegmentanzeige und den Multiplexer für die Stellenauswahl) und dieses Muster auf den Port B ausgeben. Es ist aber verschenkte Zeit, das Bitmuster 1000 mal pro Sekunde ständig neu zu errechnen, deshalb wird es beim Füllen des Bildspeichers errechnet und statt einfach nur der Ziffer wird das Bitmuster dort abgelegt. Die Ausgaberoutine muss also immer nur die nächste Stelle aus dem Bildspeicher auslesen und auf den Port ausgeben. Die Position des Ausgabecursors wird in der lokalen Variablen pos gespeichert.

static int digits[9];

void displayTick() {
    static int pos = 0;

    mPORTBWrite(digits[pos]);

    pos++;
    if (pos > 8) {
        pos = 0;
    }
}

Nun fehlt noch eine Möglichkeit, den Bildspeicher zu füllen. Als low level Funktion gibt es einen Aufruf, der die Position und einen Wert enthält. Diese Funktion errechnet daraus das Bitmuster für den Port B.

void setDigit(int pos, int value) {
  int hexDigit = (value & 0xf) << 7;
  int position = ((pos & 1) << 11) | ((pos & 0xe) << 12);
  int pattern = hexDigit | position;
  digits[pos] = pattern;
}

Darauf aufbauend gibt es nun eine Funktion, die einen 32 Bit Integer Wert in den Bildspeicher einträgt.

void setInt(int value) {
    int i, j;

    for (i = 8; i >= 0; i–) {
        int part = value % 10;
        setDigit(i, part);

        value = value / 10;
        if (value == 0) {
            // clear leading digits
            for (j = i – 1; j >= 0; j–) {
                setDigit(j, 0xf);
            }
            break;
        }
    }
}

7-Segment AnzeigeBeim Betrachten der Bilder ist mir aufgefallen, dass es ein sichtbares Übersprechen zwischen den einzelnen Stellen gibt. Ich vermute, dass die Abschaltung der Stelle nicht schnell genug ist und jede Stelle deshalb ein paar Mikrosekunden lang noch aktiv ist, während bereits die nächste Stelle angezeigt wird.

[Edit] Das habe ich mir mittlerweile mal genauer angesehen. Man bekommt den Effekt leicht per Software weg, indem man vor dem Wechsel der Stelle den Wert 0xf (alles dunkel) ausgibt und ein paar Mikrosekunden wartet. Ich vermute, dass der PNP Darlington Transistor nicht besonders schnell schaltet. Da er einen großen Vorwiderstand hat, dauert es vermutlich mehrere Mikrosekunden bis er abschaltet.

 
Weiter zum Teil 4

Management Mythen

Heute bin ich durch Zufall über einen älteren Blog Beitrag von Steven Sinofsky gestolpert: „Management Clichés That Work„. Da er auf diesem Gebiet als (ehemaliger) verantwortlicher Manager für Windows und Office viel Erfahrung haben sollte, habe ich den Beitrag natürlich gelesen. Ein paar Punkte daraus möchte ich hier aufgreifen.

Sinnvollerweise liest man erst den Beitrag von Steven Sinofsky. Anschließend geht es hier weiter…

Promise and deliver: Für den Teamleiter ist es wichtig, dass die Entwickler realistische Schätzungen abgeben. Deshalb bin ich genauso wie er der Meinung, dass die Masche “under promise and over deliver” (weniger zusagen als man leisten kann und am Ende des Projekts deshalb mehr abliefern als gefordert wurde) schlecht ist. Seine Begründung finde ich nur unzureichend. Das Problem bei dieser Vorgehensweise liegt für den Manager darin, dass er nur schlecht planen kann. Das Problem für den Entwickler wiegt noch schwerer: über fast die gesamte Projektlaufzeit wird er als wenig leistungsfähiger Mitarbeiter eingestuft. Die Erleichertung am Ende – „er hat ja doch einiges abgeliefert“ macht meiner Meinung nach die über längere Zeit aufgebaute Meinung nicht wett.

Richtig ist es (meiner Meinung nach), eine möglichst realistische Schätzung über die erreichbaren Ziele abzugeben. Gemeinsam mit einer Risikoabschätzung, was mindestens erreicht werden kann. Es ist die Aufgabe des Managers, sich Gedanken darüber zu machen, welche Zahlen nach außen kommuniziert werden. Dazu muss er aber möglichst realistische Zahlen haben. Wenn der Entwickler sich durch übermäßig hohe Sicherheitszuschläge vor Enttäuschungen schützen will, ist das unaufrichtig gegenüber der Firma und dem Team.

Diese Forderung funktioniert natürlich nur dann, wenn der Manager im Falle unerwarteter Probleme und nicht erreichter Ziele seine Verantwortung nicht einfach auf den Entwickler abschiebt. Er hatte die Zahlen und kannte die Risiken. Wenn er das nicht passend nach außen kommuniziert, muss er dafür auch selber die Verantwortung übernehmen.

Make sure bad news travels fast: dieser Punkt geht Hand in Hand mit dem bereits gesagten. Wenn die Schätzung aufgrund unerwarteter Gründe nicht aufgeht, dann muss man es auch so früh wie möglich kommunizieren. Nur dann hat der Manager die Möglichkeit Veränderungen vorzunehmen. Im schlimmsten Fall, dass der Releasetermin frühzeitig verschoben wird.

Für den Entwickler ist es hier wichtig, dass er sich nicht selber belügt. Der lustig gemeinte Satz „ein Softwareprojekt ist über 80% der Laufzeit fast fertig“ hat einen ernsten Hintergrund. Wenn ich nicht erkennen will, dass ich mit meinen Terminen im Verzug bin, kann ich es auch nicht weiterleiten. Mittelfristig ist so etwas für einen Entwickler ein ernsthaftes Karrierehindernis – er wird von seinem Manager ständig als Projektrisiko angesehen. Und dieses negative Gefühl überdeckt einen Teil der Leistungen.

Writing is thinking: es ist meiner Meinung nach offensichtlich, dass man beim Niederschreiben von Gedanken und Plänen gezwungen ist, tiefer über ein Problem nachzudenken. Wenn man einen Plan nur „im Kopf“ hat, kann man sich leichter selber beschummeln und offensichtliche Lücken leichter übersehen. Sobald man es schreibt, bekommt es eine andere Qualität. Damit ist nicht gemeint, dass man ständig umfangreiche Reports schreibt und nicht mehr zum Arbeiten kommt. Einfach in ein paar Sätzen die wichtigen Punkte aufschreiben und bei Bedarf noch ein paar Handskizzen reichen oft schon aus.

Noch besser ist es, wenn man es jemand anderen erklärt. Wenn ich es nicht erklären kann, habe ich es auch nicht verstanden. Damit ich es erklären kann, muss ich besser darüber nachdenken. Ich glaube, dass ein Teil des Erfolgs von Teamarbeit darin liegt, dass man seine Gedanken ständig erklären muss.

Practice transparency within your team: ein Softwareentwickler ist kein Einzelkämpfer in einer dunklen Höhle. Er ist ein Teamplayer – andere sind auf ihn angewiesen und er ist auf andere angewiesen. Und schon eine einzige Primadonna kann ein ganzes Team zerstören.

Don’t ask for information or reports unless they help those you ask to do their jobs: eine wichtige Aufgabe des Manager liegt darin, dafür zu sorgen, dass sein Team möglichst gute Arbeitsmöglichkeiten hat und somit die maximale Leistung bringen kann. Das ist keine reine Menschenfreundlichkeit sondern auch ganz egoistischer Selbstzweck. Ein egozentrischer Manager, der seine Eitelkeiten bedingungslos über sein gesamtes Team stellt, ist ein unfähiger Manager und gehört ausgetauscht.

Don’t keep two sets of books: den Vorgesetzten über den Projektfortschritt zu täuschen ist ein Verhalten, welches fast zwangsläufig zu Problemen führt. Ich glaube nicht, dass man das noch weiter erläutern muss.

Never vote on anything: hier bin ich abweichender Meinung. Vielleicht ist seine Einstellung auch der amerikanischen Eigenart geschuldet, dass man ein offenes Nein vermeiden sollte weil es unhöflich ist. Es gibt nun mal Situationen in denen alle Argumente ausgetauscht wurden, jeder hat die Position der anderen verstanden und trotzdem kommt man zu unterschiedlichen Ansichten. Hier kann es schon sinnvoll sein, einfach mal abzustimmen. Die Mehrheit hat nicht immer recht – aber wenn viele kluge Leute anderer Ansicht sind als ich es bin, dann ist es ein Grund, die eigene Position nochmal ernsthaft zu überdenken. Am Ende muss der Leiter entscheiden – er muss es schließlich auch verantworten.

When presenting the boss with n alternatives he/she will always choose option n+1: Autsch – das geht gegen die „pointy haired bosses„. Wenn der Vorgesetzte nicht in der Lage ist, die Möglichkeiten zu beurteilen, ist das eine Nothilfe. Ein normaler Manager möchte hier lieber eine ehrliche Liste der Möglichkeiten und Risiken haben. Niemand möchte gerne manipuliert werden, die Entwickler nicht – und die Manager auch nicht.

Products don’t ship with a list of features you thought you’d do but didn’t: wenn ein Feature so unwichtig ist, dass es ständig von anderen (neueren) wichtigen Features verdrängt wird, dann sollte man auch konsequent sein und es streichen. Sonst kommt man irgendwann in die Verlegenheit, dass man an unwichtigen Dingen arbeitet, „weil sie schon so lange da liegen“ – statt an den wichtigen Themen zu arbeiten. Es ist auch ehrlicher gegenüber dem Stakeholder dieses Features – lieber ein Ende mit Schrecken als ein Schrecken ohne Ende. Die Ausnahme hier: wenn es dem Einreicher mehr um persönliche Eitelkeiten als um das Produkt geht, kann es „humaner“ sein, den Featurewunsch in einer dunklen Ecken verschimmeln zu lassen als einen Grabenkrieg zu führen.

 

 

Frequenzzähler/ Periodenmesser mit einem PIC32 – Teil 2

Da ich am Wochenende im Augenblick stark in die Vereinsarbeit (wsb-calw.de) eingebunden bin, geht es mit meinem kleinen Projekt nicht so schnell voran wie gewünscht. Ich habe in dieser Woche aber doch ein paar weitere Schritte geschafft.

Die erste Hürde lag darin, dass ich nicht den kompletten Microstick einbauen wollte. Zum einen ist es zu teuer, für jedes kleine Bastelprojekt ca. 40 EUR auszugeben. Zum anderen wollte ich ein echtes Microcontrollerprojekt haben und nicht einfach nur eine fertige Modulplatine einbauen.

Eigentlich ist es auch nicht kompliziert. Für die Programmierung und das Debugging sind 5 Leitungen vorgesehen: GND und +3.3V, Daten und Takt sowie Reset. Also habe ich den PIC aus dem Microstick herausgenommen und auf meine Platine gesetzt. Die 5 Leitungen habe ich von der Platine mit dem Adaptersockel auf der Unterseite verbunden. Et voià – der PIC wurde von der Entwicklungsumgebung nicht gefunden. An dieser Stelle hätte ich mir eine Stunde Fehlersuche ersparen können, wenn ich mir den Schaltplan des Microstick richtig angesehen hätte. Dort kann man nämlich genau sehen, dass einige Prozessorpins nicht mit dem Adaptersockel verbunden sind. Unter anderem Reset und +3.3V.

Nachdem ich die Verbindung vom Adaptersockel entfernt und direkt in PIC Fassung eingesteckt hatte, lief die Kontaktaufnahme problemlos. Nun hatte ich den Stand, dass ich einen externen PIC32 programmieren und debuggen konnte.

Der nächste Schritt war dann Fleißarbeit: den Siebensegmentdecoder und den 1 aus 16 Demultiplexer vom Steckbrett auf meine Lochrasterplatine versetzen. Das wäre eigentlich einfach gewesen. Unglücklicherweise habe ich für die Verbindungen einen Draht mit einer extrem weichen und wärmeempfindlichen Isolierung verwendet. Und mir dabei gleich einen Kurzschluss zwischen zwei Datenleitungen eingebaut.

Kurzschluss2

Um es noch etwas komplizierter zu machen, habe ich an dem Multiplexer auch noch den Enabled Eingang offen gelassen. Da ein offener CMOS Eingang auf irgend einem Pegel hängt, bekommt man eine extrem unzuverlässige Schaltung. Bei mir blieb das Display dunkel – bis ich mit dem Finger in die Nähe des ICs gekommen bin. Alleine die Nähe hat ausgereicht, dass der Pin mit 50 Hertz Netzfrequenz ein- und ausgeschaltet hat. Wieder ein Abend verloren, bis ich das gefunden hatte.

Der nächste Abend ging dafür drauf, die 9 PNP Transistoren für den Multiplexer auf der Anodenseite einzulöten und Basiswiederständen zu versehen. Dabei hatte ich im Vorfeld den benötigten Platz etwas knapp kalkuliert. Es hat zwar alles gepasst, ist aber etwas gedrängt und schief. Nun ja – später ist es in einem Gehäuse und man sieht es nicht mehr.

Widerstände in zwei Ebenen2

 

Jetzt läuft aber alles und der nächste Schritt besteht darin, eine interruptgesteuerte Anzeigeroutine für den Multiplexer zu schreiben. Der Lötkolben kann ein paar Tage ausruhen.

Langsamer Durchlauf Blick von Oben Blick von Unten

Weiter zum Teil 3

Frequenzzähler/ Periodenmesser mit einem PIC32 – Teil 1

Im Internet hatte ich vor ein paar Wochen ein Verfahren gefunden, wie man einen Frequenzzähler mit guter Genauigkeit und Messauflösung aufbauen kann. Das Original wurde mit einem AVR Prozessor aufgebaut. Da ich ein PIC32 Projekt durchführen wollte, habe ich diesen Prozessor gewählt, auch wenn ein einfacheres Modell gereicht hätte.

Hier findet man das Originalprojekt, welches sehr gut beschrieben ist und mir wirklich gut gefallen hat.

Siebensegmentanzeige

Bei ebay konnte ich für wenige Euro 9-stellige blaue Siebensegment Displays erwerben. Da mein PIC32 Modell nicht gerade üppig mit Pins bestückt ist, habe ich einen normalen Siebensegment Decoder 7447 verwendet. Das hat auch den angenehmen Vorteil, dass ich gleich eine Open Collector Ansteuerung für die LEDs habe. Den Dezimalpunkt kann ich im Augenblick noch nicht ansteuern, dafür werde ich noch ein Port-Pin spendieren müssen.

Zum Multiplexen der einzelnen Stellen habe ich einen 1 aus 16 Decoder 74154 verwendet. Ich hatte auch überlegt, einen 1 aus 8 Decoder (74138) zu verwenden und die neunte Stelle dann direkt anzusteuern. Das hätte die Schaltung aber umfangreicher gemacht und bringt kaum eine Einsparung. Dann sind eben 7 Schaltzustände ungenutzt. Das kann ich später dazu verwenden um zusätzliche LEDs zur Statusanzeige anzusteuern.

Da ich die Segmente mit mindestens 30 mA ansteuern möchte (laut Datenblatt sind 30 mA erlaubt, deshalb wird das Display es auch überleben, wenn der Multiplexer mal stehen bleibt), kann ich die Stellenumschaltung nicht direkt vom IC aus ansteuern. Es müssen bei der Anzeige der Ziffer 8 ca. 240 Milliampere geliefert werden. Also erfolgt die Ansteuerung über einen PNP Darlington Transistor der mit dem Emitter an Plus liegt. Der Decoder zieht den ausgewählten Kanal freundlicherweise auf 0 – genau passend zur Ansteuerung des Transistors, natürlich mit einem Vorwiderstand. Vermutlich hätte hier statt eines Darlingtons auch ein normaler PNP Transistor gereicht.

Die TTL ICs betreibe ich mit den vorgeschriebenen 5 Volt, den PIC mit 3,3 Volt. Der High Level des PIC hat aber auch bei nur 3,3 Volt einen ausreichend hohen Pegel um von den TTL ICs als High erkannt zu werden.

Für den Prototypen auf dem Steckbrett habe ich nur 3 Stellen verkabelt. Der nächste Schritt besteht darin, das Ganze dann vollständig auf einer Platine aufzubauen. Sobald die Anzeige dann steht, geht es an den Zählerteil.

Zähler 1

Etwas zum Nörgeln habe ich zum Schluss aber noch: die Port-Pin Verteilung bei den 28 Pin PIC32 ist übel. Vom Port A stehen prinzipiell die ersten 5 Bit zur Verfügung – die Einschränkung deshalb, weil ich nur PA0 und PA1 tatsächlich zu einer Ausgabe überreden konnte. PA2 und PA3 gehören scheinbar dem Programmieradapter. Die Verwendbarkeit von PA4 habe ich nicht überprüft.

Beim Port B ist es auch nicht toll. Er ist auf den ersten Blick vollständig – aber nein: die Bits 6 und 12 fehlen ganz. Zwei weitere Bits sind durch den Oszillator belegt und ich habe noch nicht herausgefunden, wie man sie als Ausgang verwenden kann. Da ist es schon mühsam, vier zusammenhängende Bits als Bus zu finden. Das hätte man vielleicht auch sinnvoller aufteilen können.

Weiter zum Teil 2

Programmier-Un-tugenden, die man vermeiden sollte

Gestern ist mir mal wieder unschöner Programm-Code über den Weg gelaufen. Das hat mich dazu animiert, mal die häufigsten Fehler aufzulisten, die ich immer mal wieder sehe und über die ich mich dauerhaft ärgern kann.

Dabei geht es mir noch nicht mal um irgendwelche abstrakten Programmiermodelle oder best practices im Architekturbereich. Es geht um kurze, alltäglich Codestücke, die man eigentlich nicht falsch machen kann. Und doch wird es gerne falsch gemacht. Es geht auch nicht um Syntaxfehler, die filtert der Compiler raus. Sondern einfach nur um schlechten Code, der irgendwie funktioniert.

1. Unklare Vorstellungen über boolsche Werte

Wenn ich solche Abschnitte sehe, stellen sich mir die Nackenhaare auf:

boolean isEnabled = myButton.getEnabled();

if (isEnabled == true) { ...

Die Variable isEnabled enthält einen boolschen Wert, die IF-Entscheidung erwartet einen. Warum dann noch diesen zusätzlichen Vergleich dazu packen. Damit sich der Compiler auch wirklich sicher ist, dass der Wert true ist? Und dann könnte man konsequenterweise doch auch „if ((isEnabled == true) != false)“ schreiben.

Mir signalisiert so eine Vorgehensweise, dass der Entwickler nur eine vage Vorstellung von boolschen Werten und ihrer Verwendung besitzt.

2. Überflüssige Kontrollstrukturen

Dieses Beispiel geht in die gleiche Richtung wie Beispiel 1.

boolean isEnabled = myButton.getEnabled();

if (isEnabled) {

  otherButton.setEnabled(true);

} else {

  otherButton.setEnabled(false);

}

Hier wird ohne nachvollziehbaren Grund eine komplette Kontrollstruktur aufgebaut. Dabei kann ich mich gar nicht über die verschenken Nanosekunden ärgern. Aber jeder andere Entwickler erwartet hier, dass etwas passiert, was schwergewichtiger ist als eine einfache Zuweisung: „otherButton.setEnabled(isEnabled)“.

Leider kommt dieser Fehler in der Praxis immer wieder vor. Auch hier liegt vermutlich oft einfach ein Defizit im Bereich „mal darüber nachdenken, was ich gerade mache“ vor.

3. Verdrehte Ausdrücke

Eines meiner Lieblingsaufreger, besonders gern von alten C Programmierern gemacht:

if ( 7 == anzahlWochentage) ...

Das liest sich einfach schlecht – Obi-Wan Kenobi Grammatik. Wenn man den Ausdruck umgangssprachlich formulieren würde, würde man sagen „Wenn die Anzahl der Wochentage gleich 7 ist“ und keinenfalls „Wenn 7 die Anzahl der Wochentage ist“. Auch wenn der Inhalt der gleiche ist, stolpert man über die falsche Reihenfolge, der Gedankenfluss wird gestört, die Aufmerksamkeit ist beeinträchtigt.

Die Herkunft dieses Anti-Patterns ist klar. Uralte C Compiler (älter als 30 Jahre), haben die Anwender leichtfüßig in Fehler der Art „if (anzahlWochentage = 7)…“ laufen lassen. Durch das vergessene zweite Gleichheitszeichen wird aus dem Vergleich eine Zuweisung. In der umgedrehten Schreibweise führt das zu einem Compilerfehler, da ein konstanter Wert nicht als Left-Value verwendet werden kann. Aber auch vor 30 Jahren gab es schon „lint“ für solche Probleme. Alle modernen Compiler werfen hier deutliche Warnings aus, so dass man diesen Fehler eigentlich nicht mehr machen kann.

Ein Entwickler, der sich dieser Schreibweise bemächtigt, löst bei mir schnell den Verdacht aus, dass er sich nicht um seine Warnings kümmert. Oder, dass er so viele Warnings hat, dass er sie gar nicht mehr kontrollieren kann. Beides ist schlecht, der Programmierer bewegt sich Haarscharf an der Grenze zum Chaos.

4. Magic Numbers

Die Verwendung von symbolischen Konstanten statt Zahlen im Quellcode ist mittlerweile fast überall Standard. In vielen Firmen gibt es Style Guides, die die Verwendung von Magic Numbers ausdrücklich verbieten.

Der Nutzen von Konstanten liegt auf der Hand. Wenn ich fünf Produktgruppen habe und im Programmcode alle Schleifen mit der Ziffer 5 laufen lasse, habe ich bei einer Erweiterung auf 6 Gruppen massiven Aufwand. Man kann ja nicht einfach per Suchen und Ersetzen alle 5 gegen eine 6 austauschen. Statt dessen muss man sich jede Verwendung genau darauf hin ansehen, ob die Zahl der Gruppen gemeint ist. Zudem gibt es weitere Verwendungen, der Index der letzten Gruppe beträgt 4 und nicht 5. Darauf muss man also auch achten.

Übel wird es, wenn ein Programmierer zwar den Wortlaut der Regel befolgt aber den Sinn nicht verstanden hat (oder nicht verstehen will). Dann kommen solche Konstruktionen vor:

const FIVE = 5;

...

for (var group = 0; group < FIVE; group++) ...

Der Wortlaut der Regel wurde befolgt, im Programmcode selber gibt es keine Magic Numbers. Aber das Ziel wurde verfehlt. Ich sehe der FIVE in der for Schleife nicht an, was für einen Zweck sie hat. Besonders übel wird es, wenn sich die Zahl der Gruppen auf 6 erhöht:

const FIVE = 6;

So eine Vorgehensweise kann man nur begrenzt mit Unfähigkeit begründen. Das grenzt schon an Sabotage.

5. Unsinnige Kommentare

Vernünftige Kommentare zu erstellen, ist nicht unbedingt einfach. In manchen Betrieben gibt es eine Festlegung, was kommentiert werden muss. Bei uns ist es z.B. so, dass alle public Methoden mit einem JavaDoc Header versehen werden müssen. Kommentare innerhalb einer Funktion sind aber kaum über einen Style Guide definierbar. Wenn man dann einfach einen bestimmten Prozentsatz von Kommentarzeilen fordert, entstehen solche Konstruktionen:

customers++;  // customer wird eins hochgezählt

Ein unglaublich blöder Kommentar, der genau das wiederholt, was der Programmcode ganz offensichtlich ausführt. Solche Kommentare sind nicht nur nutzlos. Sie sind sogar schädlich. Spätestens dann, wenn sich der Programmcode mal ändert und der nutzlose Kommentar nicht angepasst wird. Dann habe ich einen Widerspruch im Quellcode der schwere Irrtümer auslösen kann.

Kommentare sollten im Normalfall NICHT beschreiben, was passiert. Das wird durch den Programmcode am Besten beschrieben. Und wenn der schwer verständlich ist, dann sollte man sich lieber Gedanken über eine bessere Schreibweise statt über einen Kommentar machen.

Kommentare sollten beschreiben WARUM etwas passiert. Denn dieser Teil ist nicht aus dem Code abzuleiten. Vielleicht aus dem Kontext. Oder aus dem Pflichtenheft (liegt das fünf Jahre später noch in einer aktualisierten Form vor?).

Erste Schritte mit dem PIC32

Gestern ist die neue Hardware gekommen. Auch hier habe ich als erstes mal Blinky ausprobiert.

Die erste Hürde lag in den Projekteinstellungen. Dort kann man den Microstick direkt auswählen. Dann wird er aber nicht erkannt. Statt dessen muss man „Starter Kits (PKOB)“ auswählen. Zum Glück wird man durch den grünen Punkt in die richtige Richtung geleitet.
ToolSelection

Nachtrag: wer lesen kann, ist im Vorteil. Die Selektion heißt MICROSTICK – ich habe aber einen Microstick II, das Nachfolgemodell.

 

PIC32Timing3

Ein erster Test mit dem Oszilloskop zeigt nur mittelprächtige Werte. Knapp 400 nS für ein Bit setzen oder zurücksetzen, das ist nicht toll für 12,5 nS Taktrate. Ich komme auf 30 Takte. Vermutlich ist das dem Compiler geschuldet, der in der kostenlosen Version keine Optimierungen bietet. Falls ich damit Probleme bekomme, werde ich es mal mit Assembler versuchen. Im Augenblick werde ich erst mal die Hardware erforschen.

PIC32Timing3ASMDer Neugierde halber habe ich mir doch mal den erzeugten Assembler Code angesehen. In den Projekteigenschaften kann man einstellen, dass die temporären Dateien nicht gelöscht werden. So ganz klar ist mir noch nicht, wo da die 30 Takte bleiben, das werde ich in den nächsten Tagen mal genauer untersuchen.

Nachtrag vom 22. Februar 2015

Ich habe dem Prozessor unrecht getan. Durch eine Konfigurationsfehler lief er nur mit etwa einem Achtel des möglichen Takts. In der verbesserten Konfiguration komme ich auf etwa 50 nS.

Link zum neuen Test

Wenn ich das zu diesem Zeitpunkt genauer untersucht hätte, wären mir einige Probleme in dem Folgeprojekt erspart geblieben.

Ernüchterung bei mbed

Nachdem ich mich über die Feiertage etwas intensiver mit der mbed Umgebung beschäftigt habe, ist meine erste Begeisterung etwas gedämpft worden. Solange man sich innerhalb des mbed Frameworks bewegt, ist alles prima. Mit wenigen C Statements kann man sich schöne Sachen programmieren.

Hässlich wird es, sobald man etwas braucht, was nicht für das Framework abgedeckt wird und man sich in Tiefen der ARM Hardware begeben muss. Auslöser bei mir war eine Anleitung im Internet zum Bau eines Frequenzzählers. Mein nucleo Board hat fast alles, um diesen Vorschlag, der auf AVR Microcontrollern basiert, mit minimalen Hardware Aufwand zu realisieren. Da das mbed Framework von Haus aus keine Counter mit externen Quellen unterstützt, habe ich erforscht, wie das funktioniert. Und da bin ich als Hobby Bastler dann doch etwas überfordert. Damit sich kein ARM Fan auf die Füße getreten fühlt: die Möglichkeiten sind gigantisch. Aber das ist auch genau das Problem: die Dokumentation ist schlecht. Und jeder Chip Hersteller macht es anders. Deshalb ist auch das Internet keine Hilfe. Eine Lösung, die jemand für einen anderen Chip gefunden hat, hilft mir nicht weiter.

TargetsAls nächsten Anlaufpunkt habe ich mir dann das mbed Framework angesehen. Eine typische Entwickler-Strategie: Lernen durch forschen, wie es andere machen. Sobald man auf die HAL Ebene kommt (Hardware Abstraction Layer), beginnt das Elend. Die Funktionen sind für jeden Hersteller anders implementiert (was noch nachvollziehbar wäre – aber nicht schön) und noch schlimmer – innerhalb der ST Familie ist auch noch jeder Chip individuell implementiert.

Da ich noch andere Hobbies habe, bin ich nicht bereit, jetzt wochenlang in die Niederungen der Hardwareprogrammierung für den F401 Chip einzusteigen. Nur um es beim Umstieg auf einen anderen Chip wieder neu anzufangen. Hier verrennt man sich in Nischen. Für professionelle Entwickler ist es sicher schön, für jedes Problem eine Lösung zu haben. Für mich als Bastler ist es leider eine Sackgasse.

Da für mich das Entdecken und Ausprobieren ohnehin eher im Vordergrund steht als das Realisieren, habe ich überlegt, welche anderen Möglichkeiten zur Verfügung stehen. Es sollten günstige Entwicklungsboards zur Verfügung stehen und zumindest theoretisch die Möglichkeit bestehen, auch eigene Boards zu entwickeln. Und das wichtigste: es sollte eine vernünftige Entwicklungsumgebung verfügbar sein.

Atmel AVR

Die 8 Bit Atmel-AVR Familie ist in Maker-Kreisen sehr stark verbreitet. Besonders die Arduino Entwicklung hat völlig neue Anwender Kreise erschlossen. Vor 15 Jahren habe ich schon  mal damit experimentiert. Auch das Frequenzzähler Projekt ist mit einem AVR Prozessor realisiert. Allerdings wollte ich es nicht einfach nachbauen sondern auch erweitern. Dafür habe ich in der Prozessorliste auch ein geeignetes Exemplar gefunden – kann es aber nicht in Einzelstückzahlen kaufen. Bei den 8 Bit Prozessoren stößt man Allgemein schnell an Grenzen, vor allem der RAM Bereich ist bei den meisten (allen?) Exemplaren sehr begrenzt.

Es gibt auch eine 32 Bit Variante – die wird aber scheinbar von Bastlern nur wenig verwendet. In Folge gibt es auch nicht so viel Hilfe und Tutorials. Und man kann auch nur begrenzt viele Modelle kaufen.

TI MSP 430

Dieser 16 Bit Prozessor war von Anfang an auf niedrigen Energieverbrauch optimiert. Mir gefällt die Architektur (einfach und überschaubar) und es gibt auch eine brauchbare Entwicklungsumgebung. Auch damit hatte ich vor 10 Jahren schon mal experimentiert und auch hier gibt das Datenblatt für mein geplantes Projekt geeignete Modell her. Aber auch hier hapert es mit dem Kaufen. Es gibt viele Varianten, aber gerade die interessanten Modelle sind nicht für den Bastler erhältlich.

Microchip PIC

Eigentlich gefällt mir dieser Prozessor von der Architektur her nicht. Aber er hat ein große Verbreitung und für den Bastler gibt es viele Modelle zu kaufen. Deshalb habe ich mir diese Modellreihe mal angesehen.

Die PIC Familie besteht nicht nur aus den (hässlichen) 8 Bit Varianten. Es gibt auch 16 Bit und 32 Bit Prozessoren. Beim Studium der Datenblätter ist mir aufgefallen, dass die 32 Bit Varianten PIC32 auf dem MIPS Prozessor basieren. Damit war mein Interesse geweckt. Als Bastler kann ich viele verschiedene Modelle kaufen und es gibt sie auch im DIL Gehäuse, ideal für einen Steckbrett-Aufbau. Eine eigene Platine kann mit minimaler externer Beschaltung realisiert werden (das war auch beim AVR toll).

Die Entwicklungsumgebung kann man sich bei Microchip herunterladen und sie kam mir gleich bekannt vor – sie basiert auf Netbeans (eine Java und C++ Entwicklungsumgebung). Praktischerweise gibt es sie auch für Linux. Auch wenn ich im Augenblick mit Windows 8.1 arbeite, wechsele ich hin und wieder zwischen Ubuntu und Windows. Dann ist es schön, wenn die Entwicklungsumgebung in beiden Systemen verfügbar ist.

Die Installation ist einfach und ohne Überraschungen. Es kommt auch ein Simulator mit, also habe ich gleich mal „Blinky“ – das HelloWorld der Embedded Welt ausprobiert und erweitert. Alles hat auf anhieb funktioniert und man mussten sich nicht mit unerwarteten Problemen rumschlagen. Die Hardware ist bestellt, kommt aber erst in ein paar Tagen. Dann werde ich weiter berichten. Ich wollte mich schon lange mal mit der MIPS Welt auseinandersetzen.

Simulator

Linearantrieb mit Schrittmotor

Im klassischen Schreinerbetrieb werden Verbindungen über Eck oft als Fingerzinken ausgeführt. Man kann sie mühsam von Hand sägen, mit einer Schablone und einer Oberfräse ausfräsen oder aber auf auf der Kreissäge erzeugen. Im amerikanischen Umfeld werden dafür gerne dado blades (Nutsägeblätter) verwendet. Das sind mehrere Sägeblätter im Stapel, die in einem Durchlauf gleich einen ganzen Zentimeter Breite raussägen können.

Dado Blade auf Wikipedia

In Deutschland sind die dado blades meines Wissens nach nicht zulässig. Aber man kann es mit etwas mehr Mühe auch mit einem normalen Kreissägeblatt hinbekommen. Es sind dann eben mehrere Durchläufe notwendig, die jeweils um die Breite des Sägeblatts versetzt vorgenommen werden. Die Schwierigkeit liegt dabei in dem korrekten Versatz, denn die Fingerzinken müssen relativ genau gearbeitet werden.

Ich habe mir dabei gedacht, dass sich um den Versatz ein Microcontroller kümmern kann. Man stellt die Breite der Zinken ein und der Controller verschiebt bei jedem Durchgang den Anschlag um den benötigten Betrag. Dieser Versatz ist nicht immer gleich. Bei meiner Säge beträgt die Breite des Sägeblatts 3 Millimeter. Ein 8 Millimeter breiter Spalt wird also durch einen Sägeschnitt erzeugt, gefolgt von zweimal einem Versatz von jeweils 2,5 Millimeter. Danach müssen 8 Millimeter stehen bleiben, der nächste Versatz beträgt also 11 Millimeter. Der Anschlag muss also immer um die Beträge 2,5 – 2,5 – 11 – 2,5 – 2,5 – 11 … Millimeter verschoben werden.

In der Bastelkiste habe ich einen alten Schrittmotor aus einem 5 1/4 Zoll Floppy Disk Laufwerk gefunden. Er hat fünf Anschlüsse, ein gemeinsamer Plus Pol und dann vier versetzte Spulen. Obwohl ich kein Datenblatt dafür habe, konnte ich die Anschlüsse relativ schnell mit einem Ohmmeter ermitteln.

ULN2003Der Anschluss an einen Microcontroller ist recht einfach. Für solche Fälle hat man immer ein paar ULN 2003 rumfliegen. Das sind 8 Darlingtontransistoren mit Vorwiderständen in einem DIL Gehäuse. Da der Schrittmotor aus einem Floppy Laufwerk stammt, gehe ich von einer Betriebsspannung von 12 Volt aus. Tests haben gezeigt, dass ab etwa 8 Volt eine ausreichende Kraft zur Verfügung steht und auch 16 Volt nach längerer Arbeit nicht zu einem heißen Motor führt.

Schrittmotor

Der Microcontroller wird über die USB Leitung mit Spannung versorgt, kann aber auch eine externe Spannungsquelle haben. Der Schrittmotor bezieht seine Versorgung aus einem Labornetzteil (über die grün/ weiße Leitung). Man sieht, dass die komplette Schaltung im Prinzip nur aus einem IC besteht.

Nachdem ich einen laufenden Motor hatte, habe ich zuerst die Schrittzahl für eine volle Umdrehung ermittelt. Das muss nicht übermäßig genau sein, da Schrittmotoren typischerweise eine Schrittzahl von 24, 200 oder 400 besitzen. Ich habe noch keinen Motor gesehen, der 197 Schritte pro Umdrehung im Datenblatt angegeben hat. Ein kleiner Test mit einer Markierung auf der Achse zeigt, dass ich ein Modell mit 200 Schritten habe.

Als nächstes musste ich die Geschwindigkeit des Motors ermitteln. Ein Schrittmotor dreht sich exakt so schnell, wie es über die Schrittfolge vorgegeben ist – zumindest im Normalbetrieb. Wenn man den Motor mechanisch zu stark belastet, verliert er Schritte, d.h. er dreht sich nicht weiter. Wenn man eine langsame Schrittfolge wählt, wird der Vorschub sehr langsam. Die verwendete M6 Gewindestange hat eine Steigung von einem Millimeter pro Umdrehung. Wenn ich 10 cm vorrücken will, sind also 100 Umdrehungen notwendig. Zur Ermittlung der maximalen Schrittrate habe ich die Geschwindigkeit beginnend von 50 Schritten pro Sekunde nach und nach auf 1000 Schritte pro Sekunde erhöht. Wenn die maximale Geschwindigkeit erreicht ist, kann der Motor einen Schritt nicht mehr vollständig ausführen bevor der nächste Schritt kommt. Das führt dazu, dass der Motor mit einem heftigen Brummen stehen bleibt. Von der Maximalgeschwindigkeit habe ich dann noch mal eine ordentliche Portion abgeschnitten. Als Sicherheitsmarge, denn bei dieser Geschwindigkeit ist die Kraft gerade noch ausreichend, um die Gewindestange zu drehen. Aktuell verwende ich maximal 500 Schritte pro Sekunde. Das ergibt 2,5 Umdrehungen pro Sekunde und somit einen Vorschub von nur 2,5 Millimeter pro Sekunde. Da ich jeweils nur kurze Strecken zurücklegen muss, ist das für den Einsatzzweck akzeptabel.

VarsDa die Port-Pins des Microcontrollers nicht in einer Reihe liegen, habe ich sie so verdrahtet, wie es am einfachsten ist. Um zur Schrittgenerierung eine 1 durchzuschieben habe ich ein Array der Länge 4 angelegt, welches dann das jeweilige Port Bit enthält. Es müssen also im Kreis alle vier Werte vorwärts oder rückwärts ausgegeben werden.

Steps

Wenn man bei einem Schrittmotor im Ruhezustand direkt auf volle Geschwindigkeit geht, führt das zu Schrittverlusten, da der Motor nicht so schnell reagieren kann. Im schlimmsten Fall läuft er gar nicht an. Deshalb wird die Geschwindigkeit langsam hochgefahren. Der Abstand vom ersten zum zweiten Schritt beträgt 13 Millisekunden. Er wird bei jedem Schritt um eine Millisekunde verkürzt, bis zur maximalen Geschwindigkeit mit einem Abstand von 2 Millisekunden. Beim Abbremsen passiert das gleiche umgekehrt, die Abstände werden über 10 Stufen langsam verlängert. Wenn weniger als 20 Schritte ausgeführt werden sollen, besteht die Sequenz nur aus einer Teilrampe zum Beschleunigen und Abbremsen.

Move

Die Funktion für den schrittweiten Vorschub wartet auf das nächste Kommando. Wenn es zum nächsten Anschlag weitergehen soll, holt sie sich die nächste Schrittzahl aus dem Feld stepValues über den hochgezählten Index globalStep und führt diese Anzahl von Schritten aus. Die Anzahl wird auch in einem Summenspeicher gemerkt, damit der Linearvorschub über ein zweites Kommando wieder zum Startpunkt zurückfahren kann.
StepGrid

Eine weitere Funktion dient zur Einstellung des Nullpunkts. In diesem Fall fährt der Schrittmotor in eine Richtung, bis diese über einen Tastendruck gewechselt wird.

Erstaunlicherweise gibt es in meiner Bastelkiste einen auffälligen Mangel an Drucktastern. Also musste ich das „User Interface“ auf ein Minimum begrenzen. Auf der Microcontroller Platine gibt es einen User Button – das war alles, was mir zur Verfügung stand.

CheckButtonDer Zustand des User Buttons wird alle 10 Millisekunden geprüft. Zur Entprellung wird ein kurzer Tastendruck gewertet, wenn der Zustand mindestens 50 Millisekunden auf 1 stand.

Wenn er eine Sekunde lang gedrückt wurde, dann wird das als langer Tastendruck gewertet.

Wenn beim Start des Programms der User Button gedrückt ist, geht das Programm in den Null-Einstellungsmodus. In diesem Fall läuft der Schrittmotor in eine Richtung bis der User Button gedrückt wird. Dann wird die Drehrichtung umgeschaltet.

Ist er beim Start nicht gedrückt, geht das Programm in den normalen Vorschubmodus. Bei jedem kurzen Button Klick wandert der Vorschub bis zum nächsten Stopp weiter. Bei einem langen Button Klick geht es zur Startposition zurück.

Was würde ich jetzt anders machen?

Da es sich nur um ein Bastelprojekt handelt, habe ich für den Linearvorschub keine Trapezgewindespindel gekauft sondern einfach eine Gewindestange aus dem Bestand verwendet. Diese hat leider einen deutlichen Schlag, was zu störenden Bewegungen seitlich und nach oben und unten führt. Für den geplanten Einsatzzweck ist das zwar egal, es sieht aber einfach nicht gut aus. Zudem könnte man die Trapezgewindespindel mit einer höheren Steigung kaufen und somit einen schnelleren Vorschub erreichen. Die aktuelle Positionierungsgenauigkeit, von rechnerisch 5 Mikrometer, kann ich ohnehin nicht ausnutzen.

Nachtrag vom 27.12.

Ein kurzer Test zeigt: Prinzipiell funktioniert das System – aber leider nicht mit der Präzision, die ich erhofft hatte. Es ist schwierig, die zu sägenden Teile exakt Senkrecht am Anschlag zu halten. Schon ein kleiner Winkelfehler führt zu unterschiedlich breiten Zinken.

Testschnitt Verleimter Test